제5장 모형선-실선 상관관계

5.1 목적

종래의 소요동력 예측에서는 다음 사항에 대하여 보통은 축척효과를 고려하지 않는다:

- (1) 선형 효과
- (2) 반류 및 추력감소계수
- (3) 프로펠러 효율
- (4) 부가물 저항

경험상 소요동력 예측은 부정확할 수 있기 때문에 현실에 맞는 시운전 동력 추정치를 얻으려 면 보정이 필요하다. 시운전 데이터에 적용되는 항해 분석 기술을 사용하여 적절한 보정(혹은 상관)계수를 찾아내 왔다. 예측 오차는 대형, 저속 비대선 (방형계수 *C_B*가 큰)에서 가장 두드 러진다.

모형선-실선 상관관계는 모형선-실선 확장과 혼동돼서는 안 된다. 확장과정은 실선 동력 예측을 위하여 모형선 결과를 실선 크기로 외삽 (extrapolating)하는 것을 의미한다. 상관관계는 예측된 실선 동력 예측치를 측정된 (혹은 예상되는) 실선의 결과와 비교하는 것이다.

5.2 절차

5.2.1 원 절차

5.2.1.1 방법

동력과 프로펠러 분당 회전수 (rpm) 예측치를 다음과 같이 수정하여 시운전 시의 전달동력 P_D 와 회전수에 대한 추정치를 얻는다.

$$P_{Ds} = (1+x)P_D (5.1)$$

그리고

$$N_S = \left(1 + k_2\right)N\tag{5.2}$$

여기에서 P_D 와 N은 수조 시험의 예측치이고 P_{Ds} , N_S 는 실선의 예상치이다. (1+x)는 동력 상관 보정계수 (혹은 실선 상관계수, SCF)이고 $(1+k_2)$ 는 회전수 보정 계수이다. 재화중량 20,000~100,000톤 범위의 선박 (주로 유조선) 100척 이상, 그리고 소수의 트롤 어선 및 소형 화물선에 대한 분석 결과를 토대로 영국 선박연구협회(BSRA; British Ship Research Associations) 와 영국 예인수조들은 단축선에 대한 보정 계수를 도출하였다 [5.1, 5.2, 5.3]. 이 상관 수정계수 도출 활동에서는 시운전 후에 정확히 동일한 흘수 및 트림으로 모형시험이 수 행되었다. 회귀 분석법을 사용하여 시운전 결과를 수심, 해상상태, 바람, 도크 출고 후 시간 및 선체 거칠기에 대하여 수정하였다. 회귀 공식으로 주어진 평균적 경향에서 대략 5% 정도 동력 데이터의 산포 (scatter)가 나타났다. 이는 대부분 측정 정확도를 반영하며 어떤 동력 예측에서 도 나타나는 기본적인 불확실성을 나타낸다. 5.2.1.2 (1+x) (SCF)와 (1+k₂) 의 값

(1+x) 의 값 배의 크기 및 어떤 C_F 공식이 사용되었는가에 따라 값들은 크게 변한다. 기본적으
 로 배 길이의 함수이지만, 흘수나 방형계수 C_B 같은 다른 변수들도 유의미한 영향을 미친다.

보정(상관)계수의 값들은 [5.1]에 종합적으로 수록되어 있고 '평균 선체/최적 시운전'에 대 한 몇몇 (1+x) 값들을 Table 5.1에 요약하였다.

Froude 마찰저항 곡선에 의한 SCF 데이터에 대한 적절한 근사는

$$SCF = 1.2 - \frac{\sqrt{L_{BP}}}{48}$$
 (5.3)

즉, 실선 전달동력의 추정치는 다음과 같다.

$$P_{Ds} = \left(P_E / \eta_D\right) \times (1+x) \tag{5.4}$$

(1+k₂) **의 값** 이 값들은 배의 크기(주로 배의 길이)나 해석법(토크 일치냐 추력 일치냐)에 따라
 약간 변하지만, 일반적으로 1.02 정도이다. 따라서 실선 회전수의 추정치는

$$N_S = N_{model} \times \left(1 + k_2\right) \tag{5.5}$$

1972, 73년에 영국의 수조들은 이 계수에 대한 세부적인 추가 개선을 발표하였다 [5.2, 5.3]. 예측치는 $(1+x)_{ITTC} = 1$ 에 기반을 두고 설정된 표준치와 다른 흘수와 거칠기에 대하여 수정한 것이다. k_2 값은 길이에 기반을 두고 거칠기 및 흘수에 대한 수정량을 더하였다.

Scott[5.4, 5.5]는 가용한 데이터에 대하여 다중 회귀 분석을 실시, (1+x)와 k_2 를 길이, 선체 거칠기, Fr, C_B 등의 함수로써 나타내었다. 위의 개별 분석보다 소폭 개선되었다고 주장 하였다.

Table 5.1. *Typical values for ship correlation factor SCF* (1 + x)

L_{BP} (m)	122	150	180	240	300
Froude friction line	0.97	0.93	0.90	0.86	0.85
ITTC friction line	1.17	1.12	1.08	1.04	1.02

Note: for L < 122 m, SCF = 1.0 assumed.

5.2.2 ITTC1978 성능 예측법

국제수조협회 (ITTC)는 1970년대 권장사항의 연장선상으로 새로운 '통일된' 동력 예측법을 제안 하였다. 이 방법은 (1+x)와 같이 하나의 총합적인 상관계수를 사용하기보다는 예측 과정을 분 리하여 다양한 개별요소의 수정을 시도하였다. 세계 대부분의 수조가 1978년 이를 승인하여 이 절차는 '단 추진기선에 대한 1978 ITTC 성능 예측법'[5.6]으로 알려져 있다. 이 방법은 다음의 세 가지 기본 단계로 구성된다: (1) 실선 총저항 계수, *C*_{TS}

$$C_{TS} = (1+k)C_{FS} + C_R + \Delta C_F + C_{AA} , \qquad (5.6)$$

(ITTC는 C_W 보다는 C_R 을 사용했음을 주목하라.) 여기에서 형상계수 (1+k)는 다음의 ITTC 저항곡선과 연계된다.

$$C_F = \frac{0.075}{\left[\log_{10} Re - 2\right]^2} \,. \tag{5.7}$$

잉여저항계수 C_R는 모형선과 실선에서 같아지고 다음과 같이 유도된다:

$$C_R = C_{TM} - (1+k)C_{FM}$$
(5.8)

거칠기 상관계수 ΔC_F 는

$$\Delta C_F = \left[105 \left(\frac{k_S}{L}\right)^{1/3} - 0.64\right] \times 10^{-3}$$
(5.9)

거칠기가 측정되지 않았다면 $k_S = 150 \times 10^{-6} \text{ m}$ 를 권장한다.

Townsin [5.7]은 Re 의 영향을 포함시킨 다음 식을 제안하였다:

$$\Delta C_F = \left\{ 44 \left[\left(\frac{k_S}{L} \right)^{1/3} - 10Re^{-1/3} \right] + 0.125 \right\} \times 10^{-3}$$
(5.10)

만약 거칠기를 측정할 수 있다면 식 (5.9)의 Bowden-Davison 공식은 식 (5.10)의 Townsin 공식으로 대체되어야 한다고 19차 ITTC(1990)에서 권고된 바 있고 [5.8, 5.9]에 논의되고 있다. 식 (5.9)는 거칠기 효과 만을 감안한 상관수정계수가 아니라 거칠기 효과를 포함하는 상관수정 계수로서 권고되었음을 인식해야 한다. 즉, 식 (5.9)와 식 (5.10) 사이의 차이는 다른 곳에서 설 명하지 않은 성분으로도 볼 수 있다. 이 성분은 다음과 같다:

$$\left[\Delta C_F\right]_{\text{Bowden}} - \left[\Delta C_F\right]_{\text{Townsin}} = \left[5.68 - 0.6\log_{10}Re\right] \times 10^{-3}.$$
(5.11)

공기저항계수 C_{AA} 는 더 나은 정보가 없다면 다음과 같은 식 (5.12)로 근사된다.

$$C_{AA} = 0.001 \frac{A_T}{S} , \qquad (5.12)$$

여기에서 A_T 는 수선 위 횡방향의 투영면적이고 S는 침수표면적이다. 공기 저항을 추정하는 방법은 3장도 참조하라.

빌지 킬이 장착되는 경우에는 총저항은 다음 비율만큼 늘어난다.

$$\frac{S + S_{BK}}{S}$$

S는 알몸선체의 침수표면적이고 S_{BK} 는 빌지 킬의 침수표면적이다.

(2) 프로펠러 특성

프로펠러 단독시험에서 결정되는 K_T , K_Q 및 η_0 값은 모형선과 실선 사이의 저항계수 C_D 차 이에 대해서 보정된다.

 $C_{DM} > C_{DS}$ 이므로 주어진 J에서 실선의 K_Q 는 작아지고 K_T 는 커지며 η_0 는 높아진 다.

모형선 프로펠러의 단독특성으로부터 실선 프로펠러의 단독특성은 다음과 같이 계산된다.

$$K_{TS} = K_{TM} + \Delta K_T, \qquad (5.13)$$

그리고

$$K_{QS} = K_{QM} - \Delta K_Q , \qquad (5.14)$$

여기에서

$$\Delta K_T = \Delta C_D \cdot 0.3 \frac{P}{D} \frac{c \cdot Z}{D} , \qquad (5.15)$$

$$\Delta K_Q = \Delta C_D \cdot 0.25 \frac{c \cdot Z}{D} \tag{5.16}$$

저항계수의 차이는

$$\Delta C_D = C_{DM} - C_{DS'} \tag{5.17}$$

여기에서

$$C_{DM} = 2\left(1 + 2\frac{t}{c}\right) \left[\frac{0.04}{\left(Re_{co}\right)^{1/6}} - \frac{5}{\left(Re_{co}\right)^{2/3}}\right],$$
(5.18)

그리고

$$C_{DS} = 2\left(1 + 2\frac{t}{c}\right) \left[1.89 + 1.62\log_{10}\frac{c}{k_p}\right]^{-2.5}.$$
(5.19)

위 식에서 Z는 날개의 개수, $P\!/D$ 는 피치비, c는 코드 길이, t는 최대 두께이고 $R\!e_{co}$ 는

무차원 반경 x = 0.75에서 국소 Reynolds 수이다. 날개의 거칠기는 $k_p = 30 \times 10^{-6}$ m 이다. Re_{co} 는 단독시험에서 2×10^5 보다 작아서는 안 된다.

 $Re_{co} (= V_R \cdot c/\nu)$ 을 추산할 때, x = 0.75 (= 0.75 R)에서 코드길이 비 c/D에 대한 근사식은 Wageningen 프로펠러 계열 (Figure 16.2 참조)로부터 다음과 같이 주어진다.

$$\left(\frac{c}{D}\right)_{0.75R} = X_1 \times BAR.$$
(5.20)

여기에서 날개수가 3이면 X₁ =0.732, 4일 때 0.510, 5이면 0.413이다.

두께 t에 대한 근사적인 추정은 Table 12.4 로부터 구해지고 V_R 은 다음과 같이 추정된다.

$$V_R = \sqrt{V_a^2 + (0.75\pi nD)^2} \ . \tag{5.21}$$

이후에 수행된 Wageningen 프로펠러 계열 데이터에 대한 회귀 분석은 Re 에 대한 수정을 포 함하는데, 16장을 참조하라.

(3) 추진계수 $\eta_H = (1-t)/(1-w_T) \downarrow \eta_R$ 자항시험으로부터 결정되는 추진계수 η_H 와 η_R 는 다음과 같이 수정된다. t와 η_R 는 실선과 모 형선에서 같다고 가정한다. 실선 반류비 w_T 는 다음과 같이 모형선 반류비와 추력감소계수로부 터 계산된다.

$$w_{TS} = (t+0.04) + (w_{TM} - t - 0.04) \frac{(1+k)C_{FS} + \Delta C_F}{(1+k)C_{FM}} .$$
(5.22)

0.04는 러더의 효과를 감안한 것이고 △C_F는 식 (5.9)에 주어진 거칠기 상관수정계수이다.

다음은 P_D 및 N에 대한 'ITTC 성능예측법'의 개요이다. 최종적인 시운전 예측값은 P_D 와 N을 시운전 예측계수 C_P 와 C_N 으로 곱하여 얻는다. C_P 와 C_N 은 예측치와 시운전 사이에 남 아 있는 차이를 처리하기 위하여 도입되었다(결국 C_P 는 (1+x)를, C_N 은 $(1+k_2)$ 을 대체한다). 수정량은 모형선과 시운전 절차 그리고 예측 마진의 선택에 따라 달라진다.

ITTC1978 절차의 완전한 설명은 [5.6]을 참조하라. 심화된 정리, 토론 및 업데이트는 ITTC 동력성능위원회에서 제공하고 있다 [5.8, 5.9].

5.2.2.1 ITTC1978 성능 예측법의 장점

SSPA의 정리논문 [5.10]에 따르면 ITTC1978 방법의 장점은 다음과 같다:

*C*_{*P*} 와 *C*_{*N*} 이 배의 크기와 무관하다.

만재흘수 (Full load) 및 발라스트 흘수 모두에서 만족스럽다.

C_P, C_N의 산포도가 크기는 하지만(평균에서 6% 및 2%), 원 방법보다 표준편차가 작다.

5.2.2.2 ITTC1978 성능 예측법의 단점

- 형상계수 (1+k)를 추산하는 방법 (즉, $C_W \propto Fr^4$ 을 가정한 저속시험)의 오차가 크고 (1+k)가 Fr 에 독립적이라고 가정하는 것이 옳지 않을 수 있다.
- ΔC_F 은 경험적이고 근사적이다.
- 프로펠러에 대한 ΔC_D 수정이 근사적이고, Re 에 따른 변화 가능성 때문에 C_L 수정도 필요할 수 있다.
- η_R의 축척효과는 측정오차 정도의 크기여서 발견되지 않을 수 있다.
- w_T의 수정도 경험적이고 근사적이다. 하지만, 모형선과 실선의 반류분포를 예측하기 위
 하여 CFD 가 사용되고 있고(8, 9장 참조), 실선 LDV 측정도 수행되고 있어 모형선-실
 선 축척 문제를 개선하는 데 기여할 것이다.

많은 수조 및 시험기관에서 ΔC_F 를 사용하는 대신 전반적인 '상관수정계수'로서 C_A 를 사용함을 주목하라. 결과적으로 식 (5.9)는 C_A 를 정의한다. 어떤 수조에서는 C_A 에 공기 저항을 포함시킨다. Holtrop [5.11]과 같은 수조 모형선 저항시험 결과의 회귀 분석에서는 ΔC_F 와 공기저항 C_{AA} 을 병합하여 전반적인 모형선-실선 상관수정계수로 사용하는 경향이 있다(식 (10.24), (10.34)를 참조하라).

ITTC1978 방법은 선형시험수조에서 일반적으로 채택되어 왔는데, 기관마다 개별 수정 성 분에 대하여 해석을 달리하거나 추가적인 데이터를 포함한 업데이트를 실시하는 등의 변화를 주고 있다. Bose[5.12]는 실제 관행에서 ITTC 방법으로부터의 변화에 대한 상세한 정리를 기술 하고 있다.

5.2.3 요약

ITTC1978 방법은 추정된 동력의 개별 성분을 축척하고자 하기 때문에 선호되고 있다. 또한 새 로운 데이터가 가용해지면 개별 성분에 대한 갱신을 허용하고 있다.

Table 5.1에 보인 것과 같은 총합적인 수정계수를 사용하는 원 방법은 BSRA 계열 및 당 시의 다른 데이터와 같이 Froude 마찰저항곡선을 사용하여 축척된 결과에 대해서는 계속 적절 하다.

5.3 속력시운전 및 분석

5.3.1 목적

선박의 속력시운전은 다음 사항을 주된 목적으로 한다.

- (1) 선속, 동력 그리고 연료소모에 대한 계약상 의무 사항 이행
- (2) 선박의 성능 및 추진 특성 획득
 - 시운전 조건에서의 선속
 - · 동력 대 동력
 - · 동력 대 회전수

· 운항 기간 동안의 선속 대 회전수

- (3) 실선에서의 선체-프로펠러 상호작용 혹은 반류 데이터 획득
- (4) 모형선-실선 상관관계 데이터 획득

속력/동력 시운전 수행 시 및 시운전 데이터 해석의 권장사항은 ITTC[5.8, 5.13, 5.14] 및 [5.15]에 주어져 있다.

5.3.2 시운전 조건

선호되는 조건은 다음과 같이 요약된다:

- · 풍속 0
- · 정수(calm water)
- ・ 심수
- · 최소한의 조류/간만의 영향

5.3.3 선박 조건

보통은 새로 건조된 선박으로 선체와 프로펠러 표면이 깨끗해야 한다. 시운전에 앞서서 선체 표면 거칠기를 측정하는 것이 바람직하며, 보통 80-150µm 정도의 AHR (Average Hull Roughness) 수치가 나온다. ITTC는 AHR이 250µm 이하일 것을 권장한다.

5.3.4 시운전 절차 및 측정

다음의 측정이 포함되어야 한다:

- (1) 수심
- (2) 해수의 비중 및 온도
- (3) 풍속, 풍향 및 파고 추정치
- (4) 선박의 흘수 (대형선은 선수, 선미 및 중앙부), 즉 배수량 및 트림 (시운전 전과 후에 측 정되어야 하며 보통 평균하는 것이 적절하다)
- (5) 프로펠러 회전수 (*N*)
- (6) 동력 (P): 아마도 BMEP를 통하거나, 더 나은 방법은 토크로 측정
- (7) 토크 (Q): 바람직하게는 비틀림 동력계 (축에 부착된) 혹은 축에 부착된 스트레인 게이지 로제트로 측정되거나 동력 P=2πNQ로부터 계산
- (8) 추력 (아마도 주 추진축 스러스트 베어링/동력계로 측정): 스트레인 게이지 측정은 일반적 으로 일상적인 상용 시운전보다는 연구용으로 수행됨
- (9) 선속: 보통 일정한 회전수에서 측정됨

선속은 정해진 거리 (해리)를 항주하는 시간으로부터 계산된다. 보통, Figure 5.1 처럼 조 류의 영향을 배제하기 위하여 측정된 해리 구간을 방향을 고정하고 (예를 들면 동 → 서 → 동) 4회 항주한 시간을 측정한다. 해리(Nm: Nautical Mile)는 육지에 설치된 표주(mile post) 혹 은 GPS로 측정한다. 1Nm = 6080ft = 1853.7m 이고, 1mile = 5280ft 이다.

Figure 5.1. Typical runs on a measured mile.

No. of run	Speed over ground	V_1	V_2	V_3	V_4	Final	Current
1E	6.50						+1.01
2 W	8.52	7.51					-1.01
3E	6.66	7.59	7.55				+0.85
4W	8.09	7.38	7.48	7.52			-0.58
5E	7.28	7.69	7.53	7.51	7.51	7.51	0.23
6W	7.43	7.36	7.52	7.53	7.52		-0.08

Table 5.2. Analysis of speed, including change in current

거리를 시간으로 나누고, '평균의 평균'을 사용하면 선속은 다음과 같이 구해진다.

$$\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4}
\end{array}$$

$$\begin{array}{c}
\frac{V_{1} + V_{2}}{2} \\
\frac{V_{2} + V_{3}}{2} \\
\frac{V_{2} + V_{3}}{2} \\
\frac{V_{3} + V_{4}}{2}
\end{array}$$

$$\begin{array}{c}
\Sigma V/2 \\
\Sigma V/2 \\
\sum V/2
\end{array}$$
(5.23)

즉, 평균선속은 $V_m = (V_1 + 3V_2 + 3V_3 + V_4)/8$ 이 된다. 이렇게 하면 원리적으로 조류의 영 향이 제거되는데, Table 5.2를 참고하라.

회전수를 바꾸어 가면서 이 과정을 반복하여 P-V, P-N 및 V-N 관계를 조사한다.

(10) 선속 측정 구간에서의 타각 기록(보통 항로 유지를 위하여 5°까지 변동)

5.3.5 각종 환경변수의 보정

5.3.5.1 조류

Figure 5.2와 같이 조류가 시간에 따라 바뀜을 파악하고 수행한다.

· 조류의 변화가 작을 때 시운전을 실시하거나, 시운전 동안 선형적으로 변화한다고 가정

· 조류 방향 및 반대 방향으로 항주하여 Table 5.2와 같이 '평균의 평균'으로 계산된 선속은 결과적으로는 조류 영향을 최소화/제거하도록 한다.

Figure 5.2. Change in current with time.

5.3.5.2 수심

포텐셜 유동의 천수효과는 수심 h 및 수심 Froude 수

$$Fr_h = \frac{V}{\sqrt{gh}}$$
 ,

에 대하여 고려한다. $Fr_h < 1.0$ 을 아임계 (subcritical), $Fr_h > 1.0$ 을 초임계 (supercritical)이라 한다. $Fr_h = 1$ 에 근접하게 운항했다면 수심과 선속을 이용한 보정이 요구된다.

SNAME 73/21차 ITTC에 따르면, 시운전 수심 한계는 $h \ge 10 TV/\sqrt{L}$ 로 권장된다. 12차 /22차 ITTC에서는 권장수심이 $h \ge 3(B \times T)^{0.5}$ 및 $h \ge 2.75 V^2/g$ 로 늘어났다. ITTC 절차에 따르 면, 권장 수심은 $h \ge 6.0A_M^{0.5}$ 과 $h \ge 0.5 V^2$ 중 큰 쪽이다.

수심이 이보다 작을 경우, Lackenby [5.16]의 다음 공식과 같은 천수 효과 보정을 적용해 야만 한다:

$$\frac{\Delta V}{V} = 0.1242 \left[\frac{A_M}{h^2} - 0.05 \right] + 1 - \left[\tanh\left(\frac{gh}{V^2}\right) \right]^{0.5},$$
(5.24)

h 는 수심, *A_M*은 중앙 단면의 수선 하 면적, *△V*는 천수효과에 의한 선속 감소이다.
 천수효과의 더욱 상세한 설명은 6장을 참고하라.

5.3.5.3 바람과 기상

보퍼트 풍력번호 3을 넘는 해상상태 혹은 20 노트 이상의 풍속에서 시운전을 수행하지 않는 것이 좋다. 파고 2.0m까지 ITTC [5.14]는 Kreitner 에 따른 저항 증가 보정을 다음과 같이 권고 하고 있다

$$\Delta R_T = 0.64 \xi_W^2 B^2 C_B \rho / L \,, \tag{5.24}$$

*ξW*는 파고이다. 동력은 식 (3.67), (3.68) 및 (3.69)를 사용하여 보정한다.

BSRA 풍속 수정 BSRA는 선박 시운전 결과는 풍속 구배를 감안하여 정지한 공기 조건으로 수 정할 것을 권고하고 있다.

시운전 보정 절차는 상대적인 풍속에 의한 바람 저항 (따라서 동력 증가)을 감하여 (풍속 구배를 감안하고 유사선의 모형시험으로 얻은 C_D 를 사용하여) 진공 중에서의 해당 동력을 유 도하는 과정이다. 이 진공 조건에 선박이 전방으로 이동할 때의 기본적인 공기 저항에 의한 동 력을 더하는 것이다.

Figure 5.3. Wind velocity gradient.

선속이 V, 맞바람이 속력 U이고 Figure 5.3과 같이 자연적인 풍속 구배

$$\frac{u}{U} = \left(\frac{h}{H}\right)^{1/5}$$

즉,

 $u = U \left(\frac{h}{H}\right)^{1/5}$

일 때,

보정량 =
$$\left\{-\int_0^H (V+u)^2 dh + V^2 H\right\} \times \frac{1}{2} \rho \frac{A_T}{H} C_D$$
,

A_T/H=B이다. 중괄호 안의 첫 번째 항은 진공으로의 보정항이고 두 번째 항은 정지된 공기 로의 재보정항임을 주목하라.

$$= \left\{ -\int_{0}^{H} \left(V + U \left[\frac{h}{H} \right]^{1/5} \right)^{2} dh + V^{2} H \right\} \times \dots$$

$$= \left\{ -\int_{0}^{H} \left(V^{2} + 2 \frac{VU}{H^{1/5}} h^{1/5} + \frac{U^{2}}{H^{2/5}} h^{2/5} \right) dh + V^{2} H \right\} \times \dots$$

$$= \left\{ -\left[V^{2} h + 2 \frac{VU}{H^{1/5}} h^{6/5} \cdot \frac{5}{6} + \frac{U^{2}}{H^{2/5}} h^{7/5} \cdot \frac{5}{7} \right]_{0}^{H} + V^{2} H \right\} \times \dots$$

, (5.26)

즉, 시운전 저항을 '정지한 공기' 중의 저항으로의 보정량은 다음과 같다.

$$\pm \eth \vec{e} = \left\{ -\left[V^2 + 2VU \cdot \frac{5}{6} + U^2 \cdot \frac{5}{7} \right] H + V^2 H \right\} \times \dots = \left\{ -\frac{5}{7}U^2 - \frac{5}{3}VU \right\} \times \frac{1}{2}\rho \frac{A_T}{H}C_D$$
(5.27)

선박의 가로 투영면적 A_T 가 높이 방향으로 불연속적일 때는 높이 구간별로, 예를 들어 높이 0에서 H_1 , H_1 에서 H_2 등과 같이 적분함으로써 처리한다. 바람 수정은 17장의 예제에서 설명 한다.

5.3.5.4 러더

러더가 사용될 때의 부가저항을 계산하여 감한다. 특히, 정수 중에서는 러더의 영향이 작을 것이다.

5.3.6 상관계수의 분석 및 반류비

5.3.6.1 상관계수

주어진 선속에서 측정된 선박의 동력은 모형선 예측값과 비교할 수 있다. 만약 실선의 배수량 Δ이 모형선과 다르거나 시간과 비용이 허락되어 모형 시험을 시운전 배수량에서 재수행한다 면 이 과정에서 실선 저항 (동력) 에 대한 배수량 (Δ^{2/3}) 보정이 필요할 수 있다.

Figure 5.4. Ja from torque identity.

5.3.6.2 반류비

대부분의 상용 시운전에서 그렇듯이, 시운전에서 추력 측정이 이루어지지 않는다고 가정하면, 반류비는 토크 일치법으로 반류비를 유도한다. 즉, 회전수 n_S 에서 즉정된 실선 토크 Q_S 를 이 용하여

$$K_{QS} = Q_S / \rho n_S^2 D^5 \, .$$

올바른 피치비 P/D의 프로펠러 단독특성도표에 위의 K_{QS} 을 대입하여 실선에서의 J_a 값을 Figure 5.4 와 같이 구한다.

실선의 반류비는 다음과 같이 구한다.

$$J_a = \frac{V_a}{nD} = \frac{V_S(1 - w_T)}{nD}$$

그리고

$$J_S = \frac{V_S}{nD}$$

이므로,

$$(1-w_T) = \frac{J_a n D}{V_S} = \frac{J_a}{J_S}$$

즉

$$w_T = 1 - \frac{J_a}{J_S} = 1 - \frac{V_a}{V_S} \,. \tag{5.28}$$

17장의 예제에서 실선 반류비의 유도 과정을 설명한다.

대부분의 모형선 시험 절차에서는 자항 시험 해석시 8장에서 논의될 것처럼 추력일치를 사용함을 주목하라.

5.3.7 요약

올바른 축척 방법을 개발함에 있어서 제어된 조건 하에서 실선의 데이터를 수집하는 것이 매 우 중요하다. 아직도 양질의 실선 데이터는 부족한데, 이는 축척 방법의 개선을 가로막고 있다.

참고문헌 (제5장)

- 5.1 NPL. BTTP 1965 standard procedure for the prediction of Ship performance from model experiments, *NPL Ship TM 82*. March 1965.
- 5.2 NPL. Prediction of the performance of SS ships on measured mile trials, *NPL Ship Report 165*, March 1972.
- 5.3 NPL. Performance prediction factors for T.S. ships, NPL Ship Report 172, March 1973.
- 5.4 Scott, J.R. A method of predicting trial performance of single screw merchant ships. *Transactions of the Royal Institution of Naval Architects.* Vol. 115, 1973, pp. 149–-171.
- 5.5 Scott, J.R. A method of predicting trial performance of twin screw merchant ships. *Transactions of the Royal Institution of Naval Architects*, Vol. 116, 1974, pp. 175–-186.
- 5.6 ITTC Recommended Procedure. 1978 Performance Prediction Method, Procedure Number 7.5-02-03-01.4, 2002.
- 5.7 Townsin, R.L. The ITTC line --- its genesis and correlation allowance. *The Naval Architect*. RINA, London, September 1985.
- 5.8 ITTC Report of Specialist Committee on Powering Performance and Prediction, 24th International Towing Tank Conference, Edinburgh, 2005.
- 5.9 ITTC Report of Specialist Committee on Powering Performance Prediction, 25th International Towing Tank Conference, Fukuoka, 2008.

- 5.10 Lindgren, H. and Dyne, G. Ship performance prediction, SSPA Report No. 85, 1980.
- 5.11 Holtrop, J. A statistical re-analysis of resistance and propulsion data. *International Shipbuilding Progress*, Vol. 31, 1984, pp. 272–-276.
- 5.12 Bose, N. *Marine Powering Predictions and Propulsors*. The Society of Naval Architects and Marine Engineers, New York, 2008.
- 5.13 ITTC Recommended Procedure. Full scale measurements. Speed and power trials, Preparation and conduct of speed/power trials. Procedure Number 7.5-04-01-01.1, 2005.
- 5.14 ITTC Recommended Procedure. Full scale measurements. Speed and power trials. Analysis of speed/power trial data, Procedure Number 7.5-04-01-01.2, 2005.
- 5.15 ITTC, Report of Specialist Committee on Speed and Powering Trials, *23rd International Towing Tank Conference*, Venice, 2002.
- 5.16 Lackenby, H. Note on the effect of shallow water on ship resistance, BSRA *Report* No. 377, 1963.

(공 란)